30 resultados para power spectral density, frequency, motor output variability, Triceps surae, steadiness

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an application of the motor current signature analysis (MCSA) method and the fuzzy min–max (FMM) neural network to detection and classification of induction motor faults is described. The finite element method is employed to generate simulated data pertaining to changes in the stator current signatures under different motor conditions. The MCSA method is then used to process the stator current signatures. Specifically, the power spectral density is employed to extract harmonics features for fault detection and classification with the FMM network. Various types of induction motor faults, which include stator winding faults and eccentricity problems, under different load conditions are experimented. The results are analyzed and compared with those from other methods. The outcomes indicate that the proposed technique is effective for fault detection and diagnosis of induction motors under different conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been consistently reported that children with autism spectrum disorders (ASD) show considerable handwriting difficulties, specifically relating to accurate and consistent letter formation, and maintaining appropriate letter size. The aim of this study was to investigate the underlying factors that contribute to these difficulties, specifically relating to motor control.

We examined the integrity of fundamental handwriting movements and contributions of neuromotor noise in 26 children with ASD aged 8-13 years (IQ. >. 75), and 17 typically developing controls. Children wrote a series of four cursive letter l's using a graphics tablet and stylus.

Children
with ASD had significantly larger stroke height and width, more variable movement trajectory, and higher movement velocities. The absolute level of neuromotor noise in the velocity profiles, as measured by power spectral density analysis, was significantly higher in children with ASD; relatively higher neuromotor noise was found in bands >3. Hz.

Our findings suggest that significant instability of fundamental handwriting movements, in combination with atypical biomechanical strategies, contribute to larger and less consistent handwriting in children with ASD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Objective: This study investigated the relationship between motor performance and social-communicative impairment in children with ADHD-combined type (ADHD-CT). Method: An upper limb Fitts’ aiming task was used as a measure of motor performance and the Social Responsiveness Scale as a measure of social-communicative/autistic impairment in the following groups: ADHD-CT (n = 11) and typically developing (TD) controls (n = 10). Results: Children with ADHD-CT displayed greater variability in their movements, reflected in increased error variance over repeated aiming trials compared with TD controls. Motor performance variability was associated with social-communicative deficits in the ADHD-CT but not in the TD group. Conclusion: Social-communicative impairments further complicate the clinical picture of ADHD-CT; therefore, further research in this area is warranted to ascertain whether a particular pattern of motor disturbance in children with ADHD-CT may be clinically useful in identifying and assessing children with a more complex ADHD presentation. © 2012 SAGE Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The short latency stretch reflex (SLR) is well described, but the stimulus that evokes the SLR remains elusive. One hypothesis states that reflex size is proportional to muscle fiber stretch, so in this study we examined the relationship between these 2 parameters in human triceps surae muscles. METHODS: Achilles tendon taps and dorsiflexion stretches with different amplitudes and preactivation torques were applied to 6 participants while electromyography and muscle fascicle length changes were recorded in soleus and medial gastrocnemius (MG). RESULTS: In response to tendon taps, neither fascicle length nor velocity changes were correlated with SLR size in either muscle, but accelerometer peaks were observed immediately after hammer-tendon contact. Similar results were obtained after dorsiflexion stretches. CONCLUSION: Muscle fascicle stretch is poorly correlated with SLR size, regardless of perturbation parameters. We attribute the SLR trigger to the transmission of vibration through the lower limb, rather than muscle fiber stretch. Muscle Nerve, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about the motor control of the lumbo-pelvic musculature in microgravity and its simulation (bed-rest). Analysis of spectral and temporal electromyographic variables can provide information on motor control relevant for normal function. This study examined the effect of 56-days of bed-rest with 1-year follow-up in 10 male subjects on the median frequency and the activation timing in surface electromyographic recordings from five superficial lumbo-pelvic muscles during a repetitive knee movement task. Trunk fat mass (from whole body-composition measurements) and movement accuracy as possible explanatory factors were included. Increased median frequency was observed in the lumbar erector spinae starting late in bed-rest, but this was not seen in its synergist, the thoracic erector spinae (p<.0001). These changes persisted up to 1-year after bed-rest and were independent of changes in body-composition or movement accuracy. Analysis suggested decreases of median frequency (p<.0001) in the abdominal and gluteal muscles to result from increased (p<.01) trunk fat levels during and after bed-rest. No changes in lumbo-pelvic muscle activation timing were seen. The results suggest that bed-rest particularly affects the shorter lumbar erector spinae and that the temporal sequencing of superficial lumbo-pelvic muscle activation is relatively robust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analysis of optimum rectifier circuits for wireless energy harvesting in deep brain stimulation (DBS) devices. Since DBS demands compact and low power consumption devices, small, high conversion efficient, and high output voltage rectifiers need to be developed. The investigation that is presented in this paper is analytical and simulated based. Analysis on a variety of circuit configurations brings more evidence to improve the performance of rectifiers. Analytical parameters influencing the output DC voltage and the efficiency of the rectifiers are described. The operating frequency of the 915 MHz industrial, scientific and medical (ISM) radio band is used in this study. The maximum conversion efficiency of the LC matched half wave rectifier, the Greinacher voltage doubler, the Delon doubler, and the 2-stage voltage multiplier is obtained as 56.34%, 74.45%, 71.48%, and 31.44%, respectively, at the 30 dBm input power level. The corresponding maximum output DC voltages are 6.27 V, 16.83 V, 13.36 V, and 9.20 V. Thus the Greinacher voltage doubler is deemed as the best configuration according to the conversion efficiency and the output voltage measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuromuscular electrical stimulation (NMES) applied to the triceps surae muscle is claimed to be effective in improving gait in children with cerebral palsy. The main aim of this study was to determine the effect of NMES on the triceps surae muscle in improving the gait and function of children with cerebral palsy. Twelve children with spastic diplegia or hemiplegia were recruited and randomly assigned to the two experimental groups. The period of the study was 8 weeks (2-4-2 week design). The initial 2 weeks was the control period, in which usual treatment was given to both groups of patients with a pre- and post-treatment assessment. The middle 4 weeks was the experimental period, in which the Treadmill+NMES group received NMES plus treadmill walking training and the Treadmill group underwent treadmill walking training only. Assessment was performed at 2-week intervals. The final 2 weeks was the carryover period, in which treatment to be tested was stopped and reassessment performed again at the end of week 8. An additional treatment and post-treatment assessment were given at weeks 2, 4 and 6 to test for the immediate effect of treatment. Altogether, eight repeated measures with three-dimensional gait analysis and five clinical measurements using the gross motor function measure (GMFM) were performed. Kinetic changes in ankle moment quotient (AMQ) and ankle power quotient (APQ) were not significant either immediately or cumulatively in both groups. Improvement in trend was observed in both groups immediately but not cumulatively. Using the GMFM, functional changes were detected in standing (GMST, p < 0.001) and in walking (GMWK, p = 0.003) using a 'time' comparison. Significant interaction was also detected in GMWK using 'treatment by time' (p = 0.035). The difference between the two groups was not significant on 'treatment' comparison of both GMST and GMWK. Both groups showed improvement in GMST and GMWK cumulatively but there was no difference between the two groups. The effects in both groups could be carried over to 2 weeks after interventions stopped. Both the Treadmill+NMES and Treadmill groups showed improvement in functional outcomes. The trend in the changes of the GMFM score suggested that improvements were greater in the Treadmill+NMES group. There was also a trend showing some immediate improvement in AMQ and APQ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air temperature, pressure and humidity are environmental factors that affect air density and therefore the relationship between a cyclist’s power output and their velocity. These environmental factors are changeable and are routinely quite different at elite cycling competitions conducted around the world, which means that they have a variable effect on performance in timed events. The present work describes a method of calculating the effect of these environmental factors on timed cycling events and illustrates the magnitude and significance of these effects in a case study. Formulas are provided to allow the calculation of the effect of environmental conditions on performance in a time trial cycling event. The effect of environmental factors on time trial performance can be in the order of 1.5%, which is significant given that the margins between ranked performances is often less than this. Environmental factors may enhance or hinder performance depending upon the conditions and the comparison conditions. To permit the fair comparison of performances conducted in different environmental conditions, it is recommended that performance times are corrected to the time that would be achieved in standard environmental conditions, such as 20 oC, 760 mmHg (1013.25 hPa) and 50% RH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effectiveness of resistance training to preserve submaximal plantar flexor (PF) torque steadiness following 60 days of bed rest (BR). Twenty-two healthy male subjects underwent either BR only (CTR, n=8), or BR plus resistance training (RT, n=14). The magnitude of torque fluctuations during steady submaximal isometric PF contractions (20%, 40%, 60% and 80% of maximum) were assessed before and after BR. Across contraction intensities, torque fluctuations (coefficient of variation, CV) increased more (P<0.05) after BR for CTR (from 0.31±0.10 to 0.92±0.63; P<0.001), than for RT (from 0.30±0.09 to 0.54±0.27; P<0.01). A shift in the spectral content of torque fluctuations towards increased rhythmic activity between 6.5 and 20Hz was observed in CTR only (P<0.05). H-reflex amplitude (H(max)/M(max) ratio) declined across groups from 0.57±0.18 before BR to 0.44±0.14 following BR (P<0.01) without correlation to CV. The present study showed that increased torque fluctuation after BR resulted from enhanced physiological tremor. Resistance training prevented the spectral shift in isometric PF torque fluctuation and offset ∼50% of the decline in performance associated with long-term BR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the effects of exercise-induced elbow flexor fatigue on voluntary force output, electromyographic (EMG) activity and motoneurone excitability of the nonexercised knee extensor muscles. Eleven participants attended 3 testing sessions: (i) control, (ii) unilateral fatiguing elbow flexion and (iii) bilateral fatiguing elbow flexion (BiFlex). The nonfatigued knee extensor muscles were assessed with thoracic motor evoked potentials (TMEPs), maximal compound muscle action potential (Mmax), knee extensor maximal voluntary contractions (MVCs), and normalized EMG activity before and at 30 s, 3 min, and 5 min postexercise. BiFlex showed significantly lower (Δ = -18%, p = 0.03) vastus lateralis (VL) normalized EMG activity compared with the control session whereas knee extension MVC force did not show any statistical difference between the 3 conditions (p = 0.12). The TMEP·Mmax-1 ratio measured at the VL showed a significantly higher value (Δ = +46%, p = 0.003) following BiFlex compared with the control condition at 30 s postexercise. The results suggest that the lower VL normalized EMG following BiFlex might have been due to a reduction in supraspinal motor output because spinal motoneuronal responses demonstrated substantially higher value (30 s postexercise) and peripheral excitability (compound muscle action potential) showed no change following BiFelex than control condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preservation of muscle function, known to decline in microgravity and simulation (bed rest), is important for successful spaceflight missions. Hence, there is great interest in developing interventions to prevent muscle-function loss. In this study, 20 males underwent 56 days of bed rest. Ten volunteers were randomized to do resistive vibration exercise (RVE). The other 10 served as controls. RVE consisted of muscle contractions against resistance and concurrent whole-body vibration. Main outcome parameters were maximal isometric plantar-flexion force (IPFF), electromyography (EMG)/force ratio, as well as jumping power and height. Measurements were obtained before and after bed rest, including a morning and evening assessment on the first day of recovery from bed rest. IPFF (-17.1%), jumping peak power (-24.1%), and height (-28.5%) declined (P < 0.05) in the control group. There was a trend to EMG/force ratio decrease (-20%; P = 0.051). RVE preserved IPFF and mitigated the decline of countermovement jump performance (peak power -12.2%; height -14.2%). In both groups, IPFF was reduced between the two measurements of the first day of reambulation. This study indicates that bed rest and countermeasure exercises differentially affect the various functions of skeletal muscle. Moreover, the time course during recovery needs to be considered more thoroughly in future studies, as IPFF declined not only with bed rest but also within the first day of reambulation. RVE was effective in maintaining IPFF but only mitigated the decline in jumping performance. More research is needed to develop countermeasures that maintain muscle strength as well as other muscle functions including power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel hierarchical data fusion technique for the non-destructive testing (NDT) and condition assessment of timber utility poles. The new method analyzes stress wave data from multisensor and multiexcitation guided wave testing using a hierarchical data fusion model consisting of feature extraction, data compression, pattern recognition, and decision fusion algorithms. The researchers validate the proposed technique using guided wave tests of a sample of in situ timber poles. The actual health states of these poles are known from autopsies conducted after the testing, forming a ground-truth for supervised classification. In the proposed method, a data fusion level extracts the main features from the sampled stress wave signals using power spectrum density (PSD) estimation, wavelet packet transform (WPT), and empirical mode decomposition (EMD). These features are then compiled to a feature vector via real-number encoding and sent to the next level for further processing. Principal component analysis (PCA) is also adopted for feature compression and to minimize information redundancy and noise interference. In the feature fusion level, two classifiers based on support vector machine (SVM) are applied to sensor separated data of the two excitation types and the pole condition is identified. In the decision making fusion level, the Dempster–Shafer (D-S) evidence theory is employed to integrate the results from the individual sensors obtaining a final decision. The results of the in situ timber pole testing show that the proposed hierarchical data fusion model was able to distinguish between healthy and faulty poles, demonstrating the effectiveness of the new method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The current study aimed to examine the effectiveness of a resistive vibration exercise countermeasure during prolonged bed-rest in preventing lower-limb muscle atrophy. METHODS: 20 male subjects underwent 56-days of bed-rest and were assigned to either an inactive control, or a countermeasure group which performed high-load resistive exercises (including squats, heel raises and toe raises) with whole-body vibration. Magnetic resonance imaging of the lower-limbs was performed at two-weekly intervals. Volume of individual muscles was calculated. RESULTS: Countermeasure exercise reduced atrophy in the triceps surae and the vastii muscles (F>3.0, p<.025). Atrophy of the peroneals, tibialis posterior and toe flexors was less in the countermeasure-subjects, though statistical evidence for this was weak (F

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spaceflight and bed rest (BR) result in loss of muscle mass and strength. This study evaluated the effectiveness of resistance training and vibration-augmented resistance training to preserve thigh (quadriceps femoris) and calf (triceps surae) muscle cross-sectional area (CSA), isometric maximal voluntary contraction (MVC), isometric contractile speed, and neural activation (electromyogram) during 60 days of BR. Male subjects participating in the second Berlin Bed Rest Study underwent BR only [control (CTR), n = 9], BR with resistance training (RE; n = 7), or BR with vibration-augmented resistance training (RVE; n = 7). Training was performed three times per week. Thigh CSA and MVC torque decreased by 13.5 and 21.3%, respectively, for CTR (both P < 0.001), but were preserved for RE and RVE. Calf CSA declined for all groups, but more so (P < 0.001) for CTR (23.8%) than for RE (10.7%) and RVE (11.0%). Loss in calf MVC torque was greater (P < 0.05) for CTR (24.9%) than for RVE (12.3%), but not different from RE (14.8%). Neural activation at MVC remained unchanged in all groups. For indexes related to rate of torque development, countermeasure subjects were pooled into one resistance training group (RT, n = 14). Thigh maximal rate of torque development (MRTD) and contractile impulse remained unaltered for CTR, but MRTD decreased 16% for RT. Calf MRTD remained unaltered for both groups, whereas contractile impulse increased across groups (28.8%), despite suppression in peak electromyogram (12.1%). In conclusion, vibration exposure did not enhance the efficacy of resistance training to preserve thigh and calf neuromuscular function during BR, although sample size issues may have played a role. The exercise regimen maintained thigh size and MVC strength, but promoted a loss in contractile speed. Whereas contractile speed improved for the calf, the exercise regimen only partially preserved calf size and MVC strength. Modification of the exercise regimen seems warranted.